Robust Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking With Heavy-Tailed Noises
نویسندگان
چکیده
منابع مشابه
Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
In this paper, an adaptive collaborative Gaussian Mixture Probability Hypothesis Density (ACo-GMPHD) filter is proposed for multi-target tracking with automatic track extraction. Based on the evolutionary difference between the persistent targets and the birth targets, the measurements are adaptively partitioned into two parts, persistent and birth measurement sets, for updating the persistent ...
متن کاملMultiple Target Tracking with The Probability Hypothesis Density Filter
The random-set framework for multiple target tracking offers a distinct alternative to the traditional approach to multiple target tracking by treating the collections of individual targets and observations as finite-sets. The multi-target state is predicted and updated recursively based on the set-valued observation. The complexity of computing the multi-target recursion grows exponentially wi...
متن کاملA Novel Merging Algorithm in Gaussian Mixture Probability Hypothesis Density Filter for Close Proximity Targets Tracking ⋆
This paper proposes a novel merging algorithm in Gaussian mixture probability hypothesis density filter to track close proximity targets. The proposed algorithm is added after GM-PHD recursion, in a condition that more than one target has the same state. The weights of Gaussian components decide whether the components can be utilized to extract states, and the means and covariances of Gaussian ...
متن کاملA shrinkage probability hypothesis density filter for multitarget tracking
In radar systems, tracking targets in low signal-to-noise ratio (SNR) environments is a very important task. There are some algorithms designed for multitarget tracking. Their performances, however, are not satisfactory in low SNR environments. Track-before-detect (TBD) algorithms have been developed as a class of improved methods for tracking in low SNR environments. However, multitarget TBD i...
متن کاملProbability Hypothesis Density Approach for Multi-camera Multi-object Tracking
Object tracking with multiple cameras is more efficient than tracking with one camera. In this paper, we propose a multiple-camera multiple-object tracking system that can track 3D object locations even when objects are occluded at cameras. Our system tracks objects and fuses data from multiple cameras by using the probability hypothesis density filter. This method avoids data association betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2856847